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Abstract—Image generation from sketch is a popular and
well-studied computer vision problem. However, the inverse
problem image-to-sketch (I2S) synthesis still remains open and
challenging, let alone image-to-scene sketch (I2S2) synthesis,
especially when full-scene sketch generations are highly desired.
In this paper, we propose a framework for generating full-scene
sketch representations from natural scene images, aiming to
generate outputs that approximate hand-drawn scene sketches.
Specifically, we exploit generative adversarial models to produce
full-scene sketches given arbitrary input images that are actually
conditions which are incorporated to guide the distribution map-
ping in the context of adversarial learning. To advance the use of
such conditions, we further investigate edge detection solutions
and propose to utilize Holistically-nested Edge Detection (HED)
maps to condition the generative model. We conduct extensive
experiments to validate the proposed framework and provide
detailed quantitative and qualitative evaluations to demonstrate
its effectiveness. In addition, we also demonstrate the flexibility
of the proposed framework by using different conditional inputs,
such as the Canny edge detector.

Index Terms—image generation, scene sketch, image-to-scene
sketch translation, conditional input, generative adversarial net-
works, edge map

I. INTRODUCTION

Image-to-Image (I2I) translation has received a lot of atten-
tions [1], [2], [3], [4] due to its many applications, including
generating new data for training deep learning models. If we
consider human-drawn sketches as a special type of image,
then this problem comprises two subproblems: Sketch-to-
Image (S2I) and Image-to-Sketch (I2S) translation. However,
till now researchers have mainly focused on the S2I problem,
including all the aforementioned research works, and also
only considered single object-based sketches. According to
our knowledge, there is no published research work in the
Image-to-Scene-Sketch (I2S2) research direction.

However, there is an urgent need to curate a large-scale
scene sketch dataset in order to train deep learning models
for related applications, such as 2D scene sketch-based 3D
scene retrieval [5]. Currently available and related scene
sketch/contour datasets [6], [7] are either too small in terms of
size or suffer in quality due to limited intra-class variations.
For example, Berkeley Segmentation Dataset and Benchmark
(BSDS500) [6] has only 500 natural images, and 2,500 contour
sketches in total, while the Photo-Sketching dataset [8] has
5,000 contour images for 1,000 outdoor scene images. The
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Fig. 1: Example sketches generated by our method based
on given images. Row 1: given images. Row 2: generated
sketches.

SketchyScene dataset [7] composed each scene sketch by se-
lecting among a limited number of pre-defined object sketches,
thus can not meet our requirement in generating realistic scene
sketches. Due to lack of available high-quality 2D scene sketch
data, collecting/generating a large number of scene sketches
for training deep learning models for related applications is
also a challenging task, even by using Amazon Mechanical
Turk. Therefore, we are considering an automatic way to
generate 2D scene sketches by using the existing large amount
of 2D natural images by training a Generative Adversarial
Network (GAN) model [9], that is developing a GAN-based
Scene Sketch generation approach, dubbed SceneSketchGAN.

The main challenges involved in human-drawn scene sketch
generation are mainly related to the inherent characteristics
of human sketching: people draw sketches in different styles
and at different levels of abstraction. This poses a highly
under-constrained problem for us. Motivated by the success
of CycleGAN [3] in handling a similar problem: generating
images from unpaired data, we adopt a similar framework.
However, we found it is still challenging to develop an end-
to-end solution which generates satisfactory results due to the
problem’s much larger domain shift between the images and
sketches. Then, to add more constraints to the CycleGAN
model to solve this under-constrained problem, we need to
provide a conditional input, instead of the original image.
Using different types of conditional inputs will generate
human-drawn sketches with different styles and/or levels of
abstraction. This motivates us to further investigate the role



of conditional inputs in training a generative model for the
problem of scene sketch generation. Finally, we utilize a
feature selection process by providing the Holistically-nested
Edge Detection (HED) [10] map of a natural scene image as
the conditional input, rather than using the raw natural image
directly. Therefore, our framework can be generalized as Edge
Map + CycleGAN, as demonstrated in Fig. 3. We conduct
extensive experiments including ablation studies to evaluate
the proposed framework, and both quantitative and qualitative
results demonstrate the effectiveness and competitiveness of
our method. We illustrate several generated sketch examples
in Fig. 1. More results can be found in the experiments section
and our project homepage1.

In a word, our contributions can be concluded into three-
fold:

• We propose a new research problem image-to-scene
sketch (I2S2) translation, which has an urgent need in
building large-scale benchmarks to train deep models in
advancing related scene sketch-based 3D scene retrieval,
recognition, and processing applications.

• We evaluate different conditional inputs for image-to-
scene sketch generation and demonstrate that edge-map
is suitable for this task in terms of distribution mapping.

• We present a simple yet effective framework to leverage
HED edge map-based feature selection (input condi-
tioning) and a CycleGAN-based distribution mapping to
generate appealing hand-drawn scene sketches.

II. RELATED WORK

Sketch-to-Image and Image-to-Sketch Synthesis. Based
on sketches, we can generate corresponding images of dif-
ferent styles, which can be found in recent image-to-image
translation algorithms based on different types of GANs:
deep convolutional GAN (DCGAN) [1], conditional GAN
(cGAN) [2], CycleGAN [3], and SketchyGAN [4]. People also
developed related GAN evaluation metrics, such as Fréchet
Inception Distance (FID) [11] to quantitatively compare the
generated results of different GAN-based approaches.

However, there is much less research work on the other di-
rection: image-to-sketch synthesis. Berger et al. [12] proposed
to generate portraits coming from the same artistic style at
different levels of abstraction based on an image. Li et al. [13]
proposed an algorithm to perform perceptual grouping of the
semantic parts of a sketch, and then generated sketches from
an image by utilizing a human stroke dataset and a deformable
stroke model-based optimization approach.

Edge Detection. Edge detection refers to finding extreme
gradient values relative to neighboring pixels. It is for this
reason that Li et al.’s Photo-Sketching project [8] is the most
closely-related research to the work presented in this paper.
In addition, we tried to gain insights from some of the more
successful models whose aim was to map sketches to photo-
realistic images. Recently, an approach named Holistically-
nested Edge Detection (HED) [10] has been developed to

1URL: https://github.com/I2S2/Image-to-Scene-Sketch-Translation/.

detect good edge images for the holistic image training and
prediction, as well as multi-scale and multi-level feature learn-
ing vision problems. It adopts an image-to-image translation
approach based on a deep learning model.

Related Paired Image-Sketch Datasets. To train our GAN-
based model, we need to provide paired image-sketch datasets,
such as Berkeley Segmentation Dataset and Benchmark
(BSDS500) [6], the Sketchy Database [14], the SketchyScene
dataset [7], and the Photo-Sketching dataset [8]. We can
also pair the 30 classes of scene images and sketches [15]
in the Eurographics Shape Retrieval Contest (SHREC) 2019
2D Scene Sketch-Based [5] and Image-Based [16] 3D Scene
Retrieval Benchmarks to form a new image-sketch pair dataset.

However, among all of the aforementioned datasets, only
BSDS500 and the Photo-Sketching datasets have the best 2D
image-2D sketch (in fact, sketch images are contour images)
matching quality (i.e. accuracy in feature correspondence).
For other datasets, either the matching quality is low such
as the Sketchy and SketchyScene datasets, or the images and
sketches are only matching at the category level, instead of at
the appearance level, such as the SHREC-based generated one.
BSDS500 has 500 natural images, while in average each image
has five different early aligned contour images annotated by
five subjects. The recently built Photo-Sketching dataset is
much bigger. It has 5,000 roughly aligned contour images for
1,000 outdoor scene images.

Sketch Style, Abstraction, and Quality. In the paper,
we define “sketch” as an abstract picture drawn by a non-
professional human using certain sketching techniques to
represent an object or a scene. It is difficult to quantitatively
measure the styles and abstraction levels of different human
sketches. Therefore, most of existing related research works
adopt a data-driven approach [12], [13] to learn different
models for them. Muhammad et al. [17] regarded the sketch
abstraction level of a sketch as a tradeoff between its recog-
nizability and the number of strokes it contains, and proposed
a sketch abstraction model through a stroke removal process
guided by reinforcement learning. Kudrowitz et al. [18] pro-
posed that we can measure the sketch quality of a sketch
image based on its line work, perspective, and proportions and
then found that higher quality sketches contribute to a higher
ranking of their creativity levels.

III. METHODOLOGY

In this section, firstly we introduce our motivation for
input conditioning, and then discuss a feasible solution to
extract desired conditional input. Secondly, we analyze the
methods used for distribution mapping for sketch generation,
and propose to use CycleGAN [3] to perform such mapping.
Finally, we present a framework to leverage each component
for full-scene sketch generation.

A. Conditional Input

Sketch generation from a given arbitrary input image can
be regarded as a conditioned-generation task. Formally, given
an input image x, the corresponding sketch y can be obtained



Fig. 2: Sketches generated by the CycleGAN using the given
images as direct inputs. Row 1: given images. Row 2: gener-
ated sketches.

by mapping x to y using a distribution mapping function g,
having y = g(x).

Nevertheless, image-to-sketch generation is quite different
from regular generation tasks. Using a regular input image
directly may lead to poor performance. As an example, we
adopt regular images as the inputs for a generative model (e.g.
CycleGAN), and train the model to generate sketches. The
results are unsatisfactory, as shown in Fig. 2. In traditional
image generation tasks [1], [2], [3], [4], the generated images
contain ample information, and it is relatively less challenging
to perform a mapping from randomly sampled inputs to the
generated results in light of GAN [9] or Variational Auto-
Encoder (VAE) [19] theories. However, as a sparse image, our
target sketches usually contain much fewer clues than regular
images and are far from sources in terms of details. This makes
the traditional image generation pipeline not an ideal candidate
for image-to-sketch generation.

In fact, the above analysis indicates that using a regular
image as the input for sketch generation is not a good option.
Therefore, we are motivated to explore using some other
format of an image as the input, namely conditional input
in this paper. To leverage GAN or VAE models to generate
satisfactory sketches, one natural solution would be using a
conditional input that has fewer minor details than its original
image. In this paper, we empirically observe that using the
edge map of an arbitrary image as the input can help the
model to generate appealing sketches. The rationale can be
generalized into two-fold. Firstly, edge detection is well-
studied and an edge map can be conveniently extracted from a
given arbitrary input image. Secondly, edge detection is similar
to sketch generation in terms of functionality. As a result, we
exploit an edge map as conditional input for the generative
model in this work.

B. Edge Detection-Based Conditional Input

Edge detection is a well-studied and widely used technology
in image processing. Typical methods include the Canny
detector, Sobel detector, Prewitt detector, etc. Technically, any
edge detector can be employed to provide a conditional input
for our task. However, these traditional edge detection methods
have a common issue: lack of ability to produce edges at
different scales and levels for images that may have a lot

Fig. 3: The proposed framework I2S2 for full-scene Image-
to-Scene Sketch translation. A natural image goes through
two stages: HED edge detection-based feature selection and
CycleGAN-based distribution mapping. G1 and G2 are two
generators, while D1 and D2 are two discriminators.

of variations in properties such as contrast and hue. This
problem becomes immediately apparent when one applies an
edge detection method such as the Canny or Sobel detector to
an entire dataset, as some images may yield a good edge map
but others may not. In addition, traditional methods, such as
the Canny detector, may need additional thresholds to specify
the sensitivity of edge detection to determine appropriate
thresholds.

The Holistically-nested Edge Detection (HED) method [10]
addresses the mentioned issues by using multiple receptive
fields of various sizes to produce multiple edge maps in
parallel, and deep supervision to weigh each output map
appropriately. As a result, it can effectively extract edge
features in image regions having sharp contrast, thus producing
a more complete edge map. Such ability makes HED more
suitable for our image-to-sketch generation task. Firstly, the
training process of the discriminator of our adopted GAN
model during the adversarial learning will benefit from a more
complete and accurate edge map, because the discriminator
cannot be easily cheated unless the generated sketches are
also complete. This will in turn boost the performance of
the generator to generate better quality sketches. Secondly,
with complete edge information, the generator is found to be
more likely to produce reasonable full-scene sketches, while
incomplete edge information often fails to provide sufficient
conditioning and constraints for the generator’s inference.

Based upon the above analysis, we adopt the HED method
as the conditioning input function g (see Section III-A).
Specifically, to accommodate it in an end-to-end fashion, we
utilize the pre-trained HED model to generate an edge map for
a given input natural image, and then feed the produced edge
map into the generative model which will be detailed in the
following section. During training, we freeze the weights of
the HED model, and only update the weights of the generative
model.



C. Generative Model-Based Scene Sketch Generation

There are two branches of generative models, namely GAN
and VAE. In this work, we exploit a GAN structure to
generate sketches, but our framework can be easily changed
to accommodate a VAE structure as the generative model. We
employ a dataset in which one image corresponds to multiple
sketch labels. One option is still using a GAN structure that
favors a 1:1 match for the image pairs, and designing a new
loss to measure the average distance for all labels. In our work,
we argue that CycleGAN [3] is more suitable for the selected
dataset, because it was developed to map an image from an
input domain to a target domain without having to be a 1:1
match for the image pairs [3].

As shown in Fig. 3, CycleGAN utilizes two pairs of gener-
ators (G1, G2) and discriminators (D1, D2) to map back and
forth between source (images) and target (sketches) domain
feature spaces X and Y . During training, the original input
image x is mapped to the target domain by generator G1,
and then back to the original source domain by generator
G2. Meanwhile, the target sketch is also being mapped to the
source image domain and then back again to the target domain.
The introduced cycle consistency loss LCyC measures the L1

loss between the original images / target sketches and their
respective reconstructions via both generators,

LCyC(G1, G2) =Ex∼pdata(x)‖G2(G1(x))− x‖1+
Ey∼pdata(y)‖G1(G2(y))− y‖1.

(1)

The loss function of CycleGAN is thus defined as follows,

L(G1, G2, D1, D2) =LGAN(G1, D2, X, Y )+

LGAN(G2, D1, Y,X)+

λLCyC(G1, G2),

(2)

where λ is a hyperparameter indicating the relative weight of
the cycle consistency loss compared with the GAN loss.

We empirically determine the optimal architecture and con-
figuration of the CycleGAN for the purpose of generating
appealing sketches. Each generator is implemented as a 9-
layer ResNet [20]. The discriminators adopt the PatchGAN
structure [2]. We train the entire generative model by following
the CycleGAN pipeline.

It is worth noting that the original identity mapping is used
to prevent the model from making any drastic changes when
the image or target is close to their respective counterparts.
However, we observe that it also helps to prevent producing
too many details in our generated sketches. This is highly
expected since sketches should be clear and simple, which
is essentially different from edge detection. Moreover, it is
convenient to control the quality of generated sketches by
adjusting the cycle loss weight, leading to more realistic
sketches. We detail the analysis in Section IV.

D. Framework

Our entire framework for full-scene sketch generation is
illustrated in Fig. 3. Our framework only exploits HED and
CycleGAN. However, it is general enough to be easily replaced

Fig. 4: Sketch generation example with our model. (A) repre-
sents a given color image, (B) is the corresponding conditional
input, and (C) is a generated full-scene sketch.

with other methods for other purposes. For instance, we inves-
tigate the combination of Canny and CycleGAN in Section IV,
and observe that it can also produce acceptable sketches. We
would like to highlight that our work aims to explore an
effective framework for image-to-scene sketch generation. We
illustrate an example of an input image, its conditional input,
and the output result in Fig. 4.

IV. EXPERIMENTS AND DISCUSSIONS

To demonstrate the effectiveness of our framework, we
detail our extensive experiments in this section. We firstly
introduce the dataset adopted for the experiments. Then, we
introduce the evaluation metrics used to quantitatively evaluate
the proposed method and training details, followed by a
qualitative analysis of the results. Finally, we provide insights
through discussions for the potential usage of our framework.
Our code will be shared via the project homepage, as well.

A. The Photo-Sketching Dataset

We exploit the dataset curated by Li et al. [8] in our
experiments. They crawled a dataset of 1,000 outdoor images
from Adobe Stock, and each image is paired with 5 drawings.
They selected 5,000 high-quality drawings from this dataset.
It is ideal for our task due to two main reasons. Firstly, each
image in this dataset corresponds to five targets that include
various degrees of details. This property is beneficial for full-
scene sketch generation. Secondly, the contour maps cover
almost all the objects in the corresponding images, which
encourages our model to generate every significant object
that is present in the image. We follow a general practice
to augment the training images by flipping, rotation, and
translation.

B. Evaluation Metrics

To quantitatively evaluate our method, we adopt the Fréchet
Inception Distance (FID) [11], Sørensen-Dice coefficient
(Dice, a.k.a F-score, F-measure) [21], sensitivity (SN, a.k.a
“recall” or “hit rate”), and accuracy (Acc). Except FID, higher
values are better. FID uses the output of the third layer of the
Inception-v3 network trained on the ImageNet dataset in order
to measure the earth-mover distance between the generated
distribution and target distribution. One main advantage of
using FID for evaluation is that we compare related statistics
in the feature space rather than doing that at the pixel-
level. This is especially important for the image-to-sketch



generation task, because a sketch image contains insufficient
pixel information and most pixels are background. A lower
FID score corresponds to a higher degree of similarity between
images. The fluctuation due to differences in trained weights is
small (less than 10% in instances mentioned in [22]), and the
domain of object classes we use to train is also small, making
FID an appropriate metric for the evaluation of generated
sketches.

For Dice, sensitivity, and accuracy, true positive (TP) pixels
represent target sketch pixels; false positive (FP) pixels repre-
sent background pixels incorrectly generated as sketch pixels.
True negative (TN) and false negative (FN) refer to the truth of
whether the pixel belongs to the background and is not part of
the sketch. The Dice-Sørensen Coefficient (Dice), sensitivity
(SN), and accuracy (Acc) are defined as follows: Dice =

2TP
2TP+FP+FN , SN = TP

TP+FN , Acc = TN+TP
TN+TP+FN+FP .

Dice score can also be viewed as a ratio of intersection of
predicted sketch pixels to union of predicted and actual sketch
pixels. This metric is commonly used in image segmentation.
Sensitivity measures the true positive rate, or recall of the
generated sketch. Accuracy measures the ratio of correctly-
placed pixels to the total number of pixels. These metrics are
all pixel-wise evaluations to measure how well the generated
sketch matches the target sketch. We strive to avoid using
evaluation methods for boundary or contour detection, since
for generating sketches our goal is the quality of the sketch,
rather than simply extracting the locations and configuration
of contours.

C. Training Settings

It is worth noting that in our framework, the first component
used to provide conditional input is a pre-trained model, and
its results are not subject to change with different training
settings. Our training details will only affect the second
component of the framework, that is, the CycleGAN part.
Here, we only introduce the training settings which lead to the
best results we have observed. We train the model using the
Adam optimizer with a learning rate of 0.0002. The batch size
and the weight of identity loss are set to 1 and 0.5, respectively.
We adjust the weights of the cycle consistency loss for the two
generators to 20%, that is λ=0.2. The model is trained for 30
epochs. For other settings, we strictly follow the practice of
training a CycleGAN for the purpose of fair comparisons.

D. Results and Discussions

To demonstrate the competence of our framework, we
compare it with other methods, such as HED [10], and Photo-
Sketching [8]. It is important to note that the HED method
was not designed for sketch generation, and to our best
knowledge there are very few works focusing on image to
full-scene sketch generation. Therefore, we still add HED
in our comparison, considering edge detection is one of the
closest general image processing tasks to our image-to-sketch
generation problem. We present the quantitative results of
each method in Table I, based on the Photo-Sketching dataset
and the aforementioned metrics. As can be seen, our method

Fig. 5: Qualitative evaluations of different methods. Row 1:
given images. Row 2: results of HED [10]. Row 3: results of
Photo-Sketching [8]. Row 4: our results.

Fig. 6: Generated sketches when different loss functions are
employed to train the generative model. Row 1: given images.
Row 2: results of the WGAN-loss [22] (WGAN+). Row 3:
results of the CycleGAN-loss (Our approach).

always outperforms either Photo-Sketching or HED in terms
of FID, Dice Score, Accuracy and Sensitivity. However, when
a regular image is directly used as the input of the generator,
that is, the CycleGAN only method, our framework without
conditional input has inferior performance than the competi-
tors in terms of all the four metrics except FID. It indicates
the necessity of exploiting an edge map as conditional input.
But when the Canny edge detector is adopted to provide the
conditional input, giving the Canny+ approach, even though
its performance is still competitive, it greatly falls behind our
results. It can be observed that using different loss functions
also have an impact on the results. The CycleGAN loss has
demonstrated more robust and also better performance than
the Wasserstein loss (WGAN+) for our framework.

We further compare the qualitative results by giving three
sets of typical examples in Figs. 5∼7. We observe that the
HED method [10] tends to generate too many edge details, and
the results are not like hand-drawn sketches. While the quality
of the sketches generated by the Photo-Sketching method [8]
is generally better, but they often miss a significant number of
important feature lines, as well as critical visual cues. On the



Metric/Method Photo-Sketching [8] HED [10] Canny+ CycleGAN WGAN+ Ours
FID 103.268 255.942 54.549 47.516 121.575 32.626
Dice 0.330 0.293 0.246 0.128 0.197 0.765
Acc 0.916 0.842 0.871 0.883 0.912 0.972
SN 0.449 0.690 0.445 0.183 0.248 0.994

TABLE I: Quantitative evaluations of sketches generated by different methods. For FID, the lower the better, and the higher the
better for the other metrics. In Canny+, we adopt the Canny detector to detect the edge map from an image, and use this edge
map as the conditional input. In CycleGAN, we directly use regular images as conditional inputs. In WGAN+, Wasserstein
loss is used within our framework.

Fig. 7: Generated sketches when different conditional inputs
are used. Row 1: given images. Row 2: when the conditional
input is provided by the Canny edge detector (Canny+). Row
3: when the conditional input is provided by the HED method
[10] (Our method).

contrary, our results are much closer to hand-drawn sketches
with necessary and proper level of details. Fig. 6 indicates that,
compared with the WGAN loss (WGAN+), the CycleGAN
loss is more helpful to robustly produce appealing results.
In Fig. 7, Canny+) often generate inferior results than our
HED-based approach. All of these further validate our best
configurations for our proposed Edge Map + GAN image-to-
scene sketch framework: HED + CycleGAN.

V. CONCLUSIONS

We propose a flexible framework for image to full-scene
sketch generation in this paper. We demonstrate that different
components can be exploited in this framework to achieve mul-
tiple levels of results. We investigate the impact of conditional
input and demonstrate the necessity of edge map for appealing
sketch generation from a regular image. We also analyze the
distribution mapping problem in the context of sketch gener-
ation and demonstrate the suitability of CycleGAN for sketch
generation. The effectiveness of the proposed framework is
validated through extensive experiments, and it is convenient
to setup the framework to produce human-drawn like sketches.
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